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___________________________________________________________________________ 

Abstract: This study used the Decision-Making Trial and Evaluation Laboratory (DEMATEL) 

method to examine the cause-and-effect relationships among key factors influencing the 

integration of Artificial Intelligence (AI) in Problem-Based Learning (PBL) for chemistry 

education. Four main factors were identified and analysed: AI guidance quality, AI adaptability 

to student mastery levels, AI support for scientific reasoning, and student engagement and 

motivation. Expert evaluation and cause-effect analysis revealed that AI guidance quality (D–

R = 1.378) and AI adaptability to student levels (D–R = 0.348) are the main driving factors in 

this system. This means both factors exert strong influence on the other factors. In contrast, AI 

support for scientific reasoning (D–R = –0.477) and student engagement and motivation (D–R 

= –1.249) function primarily as effect factors—meaning they are influenced by other AI 

qualities and functions. Priority analysis based on D+R values showed that AI support for 

scientific reasoning is the most important factor in the overall system (6.227), followed by AI 

guidance quality (6.163) and AI adaptability (6.045). Overall, these findings emphasize that 

effective use of AI in chemistry PBL depends more on pedagogy-based AI design rather than 

technological features alone. AI guidance quality and its ability to adapt to student levels serve 

as essential foundations for enhancing students' scientific thinking abilities while also 

increasing their engagement and motivation in learning. 

 

Keywords: Artificial Intelligence; Problem-Based Learning; Chemistry Education; 

DEMATEL Analysis; AI Scaffolding; Scientific Reasoning 
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Introduction  

The Artificial Intelligence (AI) has emerged as a transformative force in education, shifting 

learning from traditional teacher-centered approaches toward experiences that are more 

personalized, adaptive, and data-driven (Holme et al., 2015; Hwang & Tu, 2021). AI 

technologies—including machine learning, natural language processing, intelligent tutoring 

systems, and adaptive learning platforms—offer new opportunities to enhance teaching 

effectiveness and student learning outcomes. In chemistry education, the growing significance 

of AI is reflected in its recognition by the International Union of Pure and Applied Chemistry 

(IUPAC) as one of the “10 Most Important New Technologies in Chemistry 2023” (Gomollón-

Bel, 2023). Educational applications of AI, such as automated assessment, personalized content 

delivery, and real-time feedback, further highlight its potential to improve the quality of 

chemistry teaching and learning (Yildirim & Akcan, 2024). 

 

Alongside these developments, Problem-Based Learning (PBL) has been widely established as 

an effective student-centred pedagogical approach in chemistry education. By engaging 

students in solving complex, real-world problems, PBL supports conceptual understanding, 

critical thinking, self-directed learning, and long-term knowledge retention (Hmelo-Silver, 

2004). Its inquiry-oriented nature aligns closely with the epistemic practices of chemistry, 

fostering hypothesis formulation, experimental design, data analysis, and evidence-based 

reasoning, while also developing students’ problem-solving, collaboration, and metacognitive 

skills (Willemse et al., 2019). Despite the strong theoretical alignment between AI and PBL, 

significant challenges continue to limit the effective integration of AI within chemistry-based 

PBL environments. Many existing AI tools are designed for general educational use and lack 

the domain-specific chemical knowledge needed to support abstract reasoning, complex 

problem-solving, and theory–practice connections central to chemistry learning (Feldman-

Maggor et al., 2025; Yildirim & Akcan, 2024).  

 

Ethical and educational risks further complicate AI integration, including threats to academic 

integrity, student over-reliance on AI-generated outputs, reduced development of critical 

thinking, and the potential for biased or scientifically inaccurate feedback (GEM Report 

UNESCO, 2023; Watts et al., 2023). Studies have shown that generative AI tools may produce 

explanations that appear sophisticated yet contain conceptual or mechanistic errors inconsistent 

with accepted chemical principles (Talanquer, 2022; Yik & Dood, 2024). Moreover, the rapid 

content generation capabilities of AI challenge conventional assessment practices and raise 

equity concerns, as unequal access to AI resources may widen existing educational disparities 

(Clark et al., 2024; Guzmán et al., 2019). Addressing these challenges requires a coordinated 

and multi-dimensional approach, including the development of chemistry-specific AI tools 

aligned with PBL principles, targeted professional development for teachers, evidence-based 

ethical guidelines, and institutional strategies that promote equitable access. These efforts are 

essential to ensure that the integration of AI in PBL genuinely supports students' scientific 

thinking and meaningful learning in chemistry, rather than encouraging superficial learning or 

inequitable learning practices. 

 

Literature Review  

 

Effectiveness of AI in Chemistry Education: Empirical Evidence 

The increasing body of research on the use of Artificial Intelligence (AI) in chemistry education 

shows encouraging results, but it also highlights several important issues that need to be 

carefully considered. In general, most studies report positive effects on learning outcomes, 
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particularly in supporting the learning process. However, researchers continue to raise concerns 

related to ethical issues and academic integrity. Evidence from existing studies indicates that 

AI applications are most commonly used in higher education, with intelligent tutoring systems 

and conversational agents such as ChatGPT being the most frequently adopted tools. Research 

has also shown that AI-based tutoring systems used for solving stoichiometry problems, 

including highly scaffolded systems (e.g., Stoich Tutor) and dynamically scaffolded systems 

(e.g., ORCCA), are effective in improving students’ procedural learning. Systems that provide 

more structured and detailed scaffolding tend to produce better gains in conceptual 

understanding, as they offer more opportunities for students to practice unit analysis and 

chemical operations (Borchers et al., 2025; King et al., 2022). Interestingly, student preference 

data reveal a contrasting pattern, as learners often prefer systems that provide less guidance, 

even though these systems result in lower learning outcomes. This finding suggests that the 

relationship between student autonomy, level of scaffolding, and learning effectiveness is 

complex and requires careful consideration when integrating AI into PBL environments. 

 

The impact of generative AI tools in chemistry education presents additional challenges that 

need to be addressed. A study by Watts et al., (2023), which compared student responses with 

multiple AI chatbot responses in organic chemistry writing tasks, found clear differences not 

only among chatbot outputs but also between the problem-solving approaches of chatbots and 

students. Their analysis showed that AI chatbots generally do not engage in mechanistic 

reasoning at the same level as students, raising concerns about the suitability of AI-generated 

content as a learning model. Similarly, Yik & Dood (2024) reported that although ChatGPT 

can produce explanations of organic reaction mechanisms that appear detailed and convincing, 

these explanations often contain subtle but scientifically significant inaccuracies. This is 

concerning because students may accept incorrect information without critically evaluating it. 

Overall, these findings highlight the importance of developing students’ critical evaluation 

skills alongside the use of AI in learning. Students should be guided to use AI as a learning 

support tool while also being trained to question, verify, and correct AI-generated information 

rather than accepting it uncritically. 

 

Problem-Based Learning in Chemistry: Foundations and Outcomes 

Numerous meta-analyses and systematic reviews consistently report the positive effects of 

Problem-Based Learning (PBL) on various aspects of student development. Schmidt-

McCormack et al., (2019) found that PBL increases students’ motivation and interest by making 

learning more engaging and personally meaningful. Similarly, Dochy et al. (2003) reported that 

PBL has a positive impact on students’ self-regulation and confidence in their ability to learn 

independently, which are important affective factors for sustained academic engagement. From 

a cognitive perspective, many studies show that PBL improves chemistry students’ conceptual 

understanding, critical thinking skills, and problem-solving abilities more effectively than 

traditional teaching methods (Gürses et al., 2007; Hmelo-Silver, 2004). More recent studies 

have expanded understanding of PBL effectiveness across different chemistry topics and 

educational levels. Research on the use of PBL in electrochemistry has shown significantly 

higher achievement among students exposed to PBL compared to those taught using traditional 

expository instruction (Bilgin et al., 2017). Studies at the lower secondary level also indicate 

that PBL not only improves academic achievement but also enhances students’ attitudes toward 

chemistry (Charif et al., 2017). However, the existing literature also highlights important 

research gaps and implementation challenges. Research on PBL in secondary school chemistry 

remains limited, as most studies focus on university or lower secondary contexts (Yildirim & 

Akcan, 2024). In addition, effective PBL implementation requires adequate teacher training, 
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sufficient resources, substantial time investment, and careful problem design. These factors are 

often underreported in previous studies despite their strong influence on PBL effectiveness 

(Hung, 2025; Koh et al., 2025). Another ongoing challenge discussed in the literature is the 

difficulty of implementing PBL in large classes while maintaining intensive facilitator support 

and meaningful small-group collaboration, which are essential features of effective PBL. 

 

Synergies Between AI and PBL: Theoretical Frameworks 

The integration of Artificial Intelligence (AI) with Problem-Based Learning (PBL) is supported 

by several key educational theoretical frameworks, including social constructivism, cognitive 

load theory, and intelligent tutoring systems (ITS). From a social constructivist perspective, AI 

technologies can support collaborative knowledge construction by promoting active student 

engagement and peer interaction, which are central elements of PBL (Vygotsky, 1978; Graesser 

et al., 2018). AI-based learning scaffolding can also be understood as operating within students’ 

zones of proximal development, by providing adaptive support that helps learners progress from 

their current level of competence toward higher levels of achievement (Belland, 2017; Plass & 

Pawar, 2020). According to cognitive load theory, well-designed AI systems are able to reduce 

extraneous cognitive load by handling routine calculations, presenting problems in a more 

structured manner, and providing timely access to relevant information. This allows students’ 

working memory to be used more efficiently for developing deeper understanding of chemistry 

concepts, which is essential for problem-solving within PBL environments (Sweller et al., 1998; 

Mousavinasab et al., 2021). Research on intelligent tutoring systems (ITS) further provides 

specific frameworks for understanding how AI can enhance the implementation of PBL in 

chemistry education. VanLehn’s (2006) taxonomy of tutoring behaviors identifies several key 

functions that AI systems can perform in PBL contexts, including problem selection, 

instructional scaffolding, learning assessment, and metacognitive support. Recent advances in 

adaptive learning technologies demonstrate that AI can personalize PBL experiences by 

analyzing student performance data, identifying knowledge gaps, adjusting problem difficulty, 

and delivering targeted feedback without requiring continuous teacher intervention (Kulik & 

Fletcher, 2016; Graesser et al., 2018). In addition, the Technological Pedagogical Content 

Knowledge (TPACK) framework has been applied to examine chemistry teachers’ 

competencies in implementing AI-enhanced PBL. This highlights that effective AI integration 

requires not only strong understanding of chemistry content and PBL pedagogy, but also 

informed awareness of AI capabilities, limitations, and ethical implications (Mishra et al., 2023; 

Celik, 2023; Lorenz & Romeike, 2023). 

 

Critical Debates: Challenges and Ethical Considerations 

Although the integration of Artificial Intelligence (AI) with Problem-Based Learning (PBL) 

offers strong potential, several key issues require careful attention. One major concern is that 

many existing AI systems still rely on fixed algorithms that do not fully reflect the contextual, 

open-ended, and collaborative nature of PBL (Luckin et al., 2016; Castaneda & Selwyn, 2018). 

Research has also shown that excessive reliance on AI-based scaffolding may weaken core PBL 

goals, such as reducing productive learning challenges, limiting exploration of multiple 

problem-solving strategies, and decreasing opportunities for students to develop self-directed 

learning skills (Belland, 2017; Loyens et al., 2023). In addition, ethical issues related to the use 

of AI in chemistry education have been widely discussed. Studies have identified risks such as 

bias, inaccurate information, and AI hallucinations, which may negatively affect learning if 

students accept AI-generated content without critical evaluation (Talanquer, 2023; Yik & Dood, 

2024). UNESCO’s framework on generative AI in education highlights eight critical concerns, 

including human agency, equity, cultural diversity, data privacy, consent in content use, model 
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transparency, digital information pollution caused by AI-generated content, and the risk of 

marginalizing diverse perspectives (Miao & Holmes, 2023). Recent studies emphasize that 

responsible AI integration requires explicit attention to these ethical dimensions. This includes 

transparent communication about the limitations of AI systems, the development of students’ 

critical AI literacy, and the design of assessment methods that can distinguish genuine student 

learning from task completion that relies heavily on AI support (Feldman-Maggor et al., 2024; 

Susnjak & McIntosh, 2024). 

 

Overall, the literature review reveals several important research gaps that need to be addressed 

in studies on AI-integrated PBL in chemistry education. Most existing studies are short-term in 

nature and place limited emphasis on long-term learning outcomes. In addition, understanding 

of how different types and levels of AI scaffolding influence various aspects of chemistry 

learning—such as conceptual understanding, procedural skills, scientific reasoning, and 

collaborative learning—remains limited. Teacher perspectives, professional development 

needs, and practical challenges of classroom implementation have also received insufficient 

attention, despite their critical importance for successful adoption. Given the rapid advancement 

of AI technologies, these gaps highlight the need for a systematic and evidence-based research 

approach to identify and prioritize the key factors that influence the effectiveness of AI 

integration in chemistry PBL. Therefore, this study employs a structured analytical method to 

examine the cause–effect relationships among the main factors affecting the implementation of 

AI-supported PBL in chemistry education. 

 

Methodology  

This study employed the Decision-Making Trial and Evaluation Laboratory (DEMATEL) 

method. DEMATEL is a structural modeling technique developed by the Science and Human 

Affairs Program of the Battelle Memorial Institute in Geneva between 1972 and 1976 to analyze 

complex real-world problems (Fontela & Gabus, 1976). Over time, DEMATEL has evolved 

into an effective multi-criteria decision-making tool that allows researchers to visualize cause–

effect relationships among factors within complex systems through the construction of 

structural models and impact–relation maps (Si et al., 2018). The key strength of the 

DEMATEL method lies in its ability to convert qualitative judgments into quantitative 

indicators, thereby revealing interdependencies and feedback relationships among system 

elements (Wu & Lee, 2007). Unlike traditional analytical approaches that assume criteria are 

independent, DEMATEL explicitly considers the mutual influence and complex relationships 

that exist in real decision-making situations. As a result, this method is particularly useful for 

identifying critical factors and for understanding both the direct and indirect effects of one 

factor on others within a system (Tzeng et al., 2007). 

 

DEMATEL Procedural Framework 

The implementation of the DEMATEL method involves a systematic five-step procedure 

designed to transform expert judgments into a structural model that reveals cause–effect 

relationships among the factors under study. The first step is the construction of the direct-

relation matrix, in which experts evaluate the degree of direct influence between each pair of 

factors using a predefined scale, typically ranging from 0 (no influence) to 4 (very high 

influence) (Seyed-Hosseini et al., 2006). The second step involves normalizing the direct-

relation matrix by dividing each value by the maximum row sum. This process ensures that all 

values fall within a standardized and comparable range (Lin & Wu, 2008). In the third step, the 

total-relation matrix is calculated to capture both direct and indirect influences among the 

factors. This matrix is obtained using the formula T = X(I − X)⁻¹, where X represents the 
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normalized direct-relation matrix and I denotes the identity matrix (Tseng, 2009). The fourth 

step calculates the prominence and relationship indices by summing the rows (D) and columns 

(R) of the total-relation matrix. The value D + R indicates the overall importance of each factor 

within the system, while D − R distinguishes between cause factors (positive values) and effect 

factors (negative values) (Liou et al., 2007). The final step is the construction of a cause–effect 

diagram, where these indices are plotted on a two-dimensional graph. The horizontal axis 

represents factor importance (D + R), and the vertical axis represents causal relationships (D − 

R). This visual representation clearly illustrates the structural relationships among factors and 

supports informed decision-making and strategic planning (Hsu et al., 2013; Yang & Tzeng, 

2011). 

 

Table 1: Step in DEMATEL 
Step 1 Generate the Direct-Relation Matrix 

Purpose: To identify the relationships among n criteria/factors within the system 

Procedure: 

• Construct an n × n matrix, where n represents the number of factors 

• Each expert is asked to complete the matrix independently 

• Values in each row represent the influence of one factor on other factors 

• Values in each column represent the influence received by that factor from other factors 

• When multiple experts are involved, calculate the average (mean) of all expert 

evaluations to obtain a single direct-relation matrix 

Formula: 

𝐗 = [
𝟎 ⋯ 𝒙𝒏𝟏

⋮ ⋱ ⋮
𝒙𝟏𝒏 ⋯ 𝟎

] 

Note: The diagonal values of the matrix (where row = column) are set to 0, as a factor does not 

influence itself 

Step 2 Compute the normalized direct-relation matrix 

Purpose: To standardize all values within a common range so that they can be easily compared 

Procedure: 

• Calculate the sum of each row and each column in matrix X 

• Identify the maximum value among all row and column sums (denoted as k) 

• Divide each element in matrix X by the value k 

Formula: 

𝑘 = 𝑚𝑎𝑥 {𝑚𝑎𝑥 ∑ 𝑥𝑖𝑗 ,

𝑛

𝑗=1

∑ 𝑥𝑖𝑗  

𝑛

𝑖=1

} 

𝑁 =
1

𝑘
∗ 𝑋 

Output: A normalized matrix (N), where all values range between 0 and 1 

Step 3 Compute the total relation matrix 

Purpose: To capture both direct and indirect influences among all factors in the system 

Procedure: 

• Generate an n × n identity matrix (I), where diagonal elements are 1 and all other 

elements are 0 

• Subtract the normalized matrix N from the identity matrix to obtain (I − N) 

• Compute the inverse of the matrix (I − N), denoted as (I − N)⁻¹ 

• Multiply the normalized matrix N by (I − N)⁻¹ to obtain the total-relation matrix 
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Formula: 
𝑇 = lim

𝑘→+∞
(𝑁1 + 𝑁2 + ⋯ + 𝑁𝑘)   

Equivalent to:                     T = N × (𝐼 − 𝑁)−1 

Output: The total-relation matrix (T), which represents the overall influence (direct and indirect) 

among all factors. 

Step 4 Setting the Threshold Value 

Purpose: 

• To identify significant causal relationships among factors 

• To eliminate weak or negligible relationships when constructing the Network 

Relationship Map (NRM) 

Procedure: 

• Calculate the average value of all elements in the total-relation matrix T 

• Use this average value as the threshold value 

• Compare each element in matrix T with the threshold value 

• Set all values below the threshold to zero, as these relationships are considered 

insignificant 

• Retain only values greater than the threshold for further analysis and visualization 

Application in NRM: 

• Only relationships with values greater than the threshold are displayed in the Network 

Relationship Map (NRM) 

• Partial or weak relationships are excluded to produce a clearer and more meaningful 

causal structure 

Threshold Value Used in This Study: 

• Threshold value = 0.811 

Output: 

• A filtered internal relations matrix used to construct the NRM, showing only meaningful 

causal links among factors 

Step 5 Final output and create a causal diagram 

Purpose: To determine the importance and causal role of each factor in the system 

Procedure: 

Calculate the sum of each row in matrix T to obtain D 

 𝐷 = ∑ 𝑇𝑖𝑗
𝑛
𝑗=1  

 

Calculate the sum of each column in matrix T to obtain R 

 𝑅 = ∑ 𝑇𝑖𝑗
𝑛
𝑖=1  

 

Compute D + R and D − R for each factor 

Interpretation: 

• D + R → Indicates the overall importance (prominence) of a factor in the system 

• D − R → Indicates the net effect of a factor: 

Positive value → Cause factor 

Negative value → Effect factor 

Output: A causal diagram, where: 

Horizontal axis = D + R (importance) 

Vertical axis = D − R (cause–effect) 

 

Sampling Technique for DEMATEL Application 

Selecting an appropriate sampling technique is a critical part of implementing the DEMATEL 

method, as the quality and representativeness of expert judgments directly affect the validity 

and reliability of the resulting structural model. Purposive sampling, also known as judgmental 

or expert sampling, is the most commonly used approach in DEMATEL studies. In this method, 

participants are deliberately selected based on their specialized knowledge, relevant experience, 

and deep understanding of the problem being studied (Patton, 2002; Etikan et al., 2016). The 
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appropriate sample size for DEMATEL studies is still debated among researchers. However, 

most studies recommend involving between 5 and 15 experts, as this range provides a balance 

between obtaining diverse perspectives and managing practical constraints such as data 

collection and consensus building (Chen & Hung, 2010; Li & Tzeng, 2009). Experts are usually 

selected based on several criteria, including more than five years of professional experience in 

the relevant field, at least a master’s degree, current involvement in related decision-making 

processes, and demonstrated expertise through publications or practical achievements (Dalalah 

et al., 2011; Shieh et al., 2010). In this study, five experts were selected as the main participants 

to provide expert judgments for the implementation of the DEMATEL method. 

 

DEMATEL Questionnaire Scale Explanation 

This study employs the DEMATEL (Decision Making Trial and Evaluation Laboratory) 

method to analyze the cause–effect relationships among the identified factors. Respondents 

were asked to evaluate the degree of direct influence of each factor on other factors using a 

five-point scale. The definition of each score in this five-point scale is presented in Table 2. 

 

Table 2: DEMATEL Influence Scale Used in the Study 
Score Level of Influence Description 

0 No influence The factor has no direct influence on another factor 

1 Low influence The factor has a very minimal effect on another factor 

2 Moderate influence The factor has a reasonable level of effect on another factor 

3 High influence The factor has a significant effect on another factor 

4 Very high influence The factor has a very strong cause–effect relationship with 

another factor 

 

Findings 

 

Table 3.1: Direct Relation Matrix 
 Quality of AI 

Scaffolding 

 AI Adaptivity to 

Student Proficiency 

Levels 

AI Support for 

Scientific 

Reasoning 

Student 

Engagement & 

Motivation 

Quality of AI 

Scaffolding 

0  3.6 3.6 3.6 

AI Adaptivity to 

Student Proficiency 

Levels 

2.6  0 3.2 3 

AI Support for 

Scientific Reasoning 

2.4  2.2 0 3.2 

Student Engagement 

& Motivation 

1.2  2 2.6 0 

 

Table 3.2: The Normalized Direct-Relation Matrix 

 Quality of AI 

Scaffolding 
AI Adaptivity to 

Student Proficiency 

Levels 

AI Support for 

Scientific 

Reasoning 

Student 

Engagement & 

Motivation 

Quality of AI 

Scaffolding 
0 0.333 0.333 0.333 

AI Adaptivity to 

Student Proficiency 

Levels 

0.241 0 0.296 0.278 

AI Support for 

Scientific Reasoning 
0.222 0.204 0 0.296 

Student Engagement 

& Motivation 
0.111 0.185 0.241 0 
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Table 3.3: The Total Relation Matrix 
 Quality of AI 

Scaffolding 

AI Adaptivity to 

Student Proficiency 

Levels 

AI Support for 

Scientific 

Reasoning 

Student 

Engagement & 

Motivation 

Quality of AI 

Scaffolding 

0.598 0.962 1.088 1.122 

AI Adaptivity to 

Student Proficiency 

Levels 

0.7 0.602 0.938 0.956 

AI Support for 

Scientific Reasoning 

0.634 0.71 0.637 0.894 

Student Engagement 

& Motivation 

0.46 0.575 0.689 0.517 

 

Table 3.4: The Total Relationships Matrix by Considering the Threshold Value 
 Quality of AI 

Scaffolding 

AI Adaptivity to 

Student Proficiency 

Levels 

AI Support for 

Scientific 

Reasoning 

Student 

Engagement & 

Motivation 

Quality of AI 

Scaffolding 

0 0.962 1.088 1.122 

AI Adaptivity to 

Student Proficiency 

Levels 

0 0 0.938 0.956 

AI Support for 

Scientific Reasoning 

0 0 0 0.894 

 

Table 3.5: The Final Output 
 R D D+R D-R 

Quality of AI Scaffolding 2.392 3.771 6.163 1.378 

AI Adaptivity to Student Proficiency Levels 2.849 3.197 6.045 0.348 

AI Support for Scientific Reasoning 3.352 2.875 6.227 -0.477 

Student Engagement & Motivation 3.489 2.24 5.729 -1.249 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: DEMATEL Based Structural Model of AI Integration Factors in Chemistry 

Problem-Based Learning 

 

Quality of AI 

Scaffolding 

AI Adaptivity to Student 

Proficiency Levels 
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Figure 2: Cause–Effect Diagram 

 

Discussion 

The cause–effect diagram produced from the DEMATEL analysis provides a clear 

understanding of the structural relationships among the key factors influencing the integration 

of Artificial Intelligence (AI) in Problem-Based Learning (PBL) for chemistry education. Based 

on the positions of the factors along the importance (D + R) and cause–effect (D − R) axes, the 

results distinguish between driving factors and outcome factors within the system. The findings 

show that Quality of AI Scaffolding is the most influential driving factor, with high importance 

and a positive net effect, highlighting its foundational role in supporting students as they solve 

complex chemistry problems through structured guidance and step-by-step reasoning support. 

AI Adaptivity to Student Proficiency Levels also functions as a driving factor, indicating that 

AI systems capable of adjusting feedback and task difficulty based on students’ learning levels 

are important for effective PBL implementation. In contrast, AI Support for Scientific 

Reasoning and Student Engagement and Motivation emerge as outcome factors that are mainly 

influenced by the quality and adaptivity of AI support rather than acting as direct drivers 

themselves. This suggests that improvements in reasoning and motivation do not occur 

automatically through AI use, but instead result from well-designed, pedagogically aligned AI 

scaffolding. Overall, the findings emphasize that successful AI integration in chemistry PBL 

depends more on strong instructional design and adaptive support than on surface-level 

outcomes alone. 

 

Conclusion 

The DEMATEL analysis in this study establishes a clear cause–effect hierarchy among the 

factors influencing the integration of Artificial Intelligence (AI) in Problem-Based Learning 

(PBL) for chemistry education. The findings show that quality of AI scaffolding and AI 

adaptivity to students’ proficiency levels act as the main driving factors, which in turn influence 

AI support for scientific reasoning as well as student engagement and motivation. These results 

clarify that AI does not automatically improve learning outcomes; rather, its effectiveness in 

PBL depends on how well AI is designed to guide students and adapt support to their learning 

levels. For chemistry teachers and educational technologists, these findings offer practical 

guidance by highlighting the need to prioritize the development of chemistry-specific AI 

scaffolding grounded in domain expertise, adaptive algorithms that respond to individual 

learning progress, and professional development programs that equip teachers with the skills to 
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integrate AI strategically within PBL contexts. As the use of AI in education continues to grow 

globally, this study provides empirical evidence that technological sophistication must be 

balanced with pedagogical sophistication to fully realize the potential of AI in chemistry 

education. Future research is recommended to validate these cause–effect relationships through 

longitudinal studies, explore contextual variations across different student populations and 

chemistry topics, and develop evidence-based frameworks that support the co-design of AI 

systems by chemistry educators, students, and technology developers to ensure alignment with 

authentic learning needs in scientific problem-solving. 
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