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Abstract: This study used the Decision-Making Trial and Evaluation Laboratory (DEMATEL)
method to examine the cause-and-effect relationships among key factors influencing the
integration of Artificial Intelligence (Al) in Problem-Based Learning (PBL) for chemistry
education. Four main factors were identified and analysed: Al guidance quality, Al adaptability
to student mastery levels, Al support for scientific reasoning, and student engagement and
motivation. Expert evaluation and cause-effect analysis revealed that Al guidance quality (D—
R = 1.378) and Al adaptability to student levels (D-R = 0.348) are the main driving factors in
this system. This means both factors exert strong influence on the other factors. In contrast, Al
support for scientific reasoning (D—R = —0.477) and student engagement and motivation (D—R
= —1.249) function primarily as effect factors—meaning they are influenced by other Al
qualities and functions. Priority analysis based on D+R values showed that Al support for
scientific reasoning is the most important factor in the overall system (6.227), followed by Al
guidance quality (6.163) and Al adaptability (6.045). Overall, these findings emphasize that
effective use of Al in chemistry PBL depends more on pedagogy-based Al design rather than
technological features alone. Al guidance quality and its ability to adapt to student levels serve
as essential foundations for enhancing students' scientific thinking abilities while also
increasing their engagement and motivation in learning.

Keywords: Artificial Intelligence; Problem-Based Learning; Chemistry Education;
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Introduction

The Artificial Intelligence (AI) has emerged as a transformative force in education, shifting
learning from traditional teacher-centered approaches toward experiences that are more
personalized, adaptive, and data-driven (Holme et al., 2015; Hwang & Tu, 2021). Al
technologies—including machine learning, natural language processing, intelligent tutoring
systems, and adaptive learning platforms—offer new opportunities to enhance teaching
effectiveness and student learning outcomes. In chemistry education, the growing significance
of Al is reflected in its recognition by the International Union of Pure and Applied Chemistry
(IUPAC) as one of the “10 Most Important New Technologies in Chemistry 2023” (Gomollon-
Bel, 2023). Educational applications of Al, such as automated assessment, personalized content
delivery, and real-time feedback, further highlight its potential to improve the quality of
chemistry teaching and learning (Yildirim & Akcan, 2024).

Alongside these developments, Problem-Based Learning (PBL) has been widely established as
an effective student-centred pedagogical approach in chemistry education. By engaging
students in solving complex, real-world problems, PBL supports conceptual understanding,
critical thinking, self-directed learning, and long-term knowledge retention (Hmelo-Silver,
2004). Its inquiry-oriented nature aligns closely with the epistemic practices of chemistry,
fostering hypothesis formulation, experimental design, data analysis, and evidence-based
reasoning, while also developing students’ problem-solving, collaboration, and metacognitive
skills (Willemse et al., 2019). Despite the strong theoretical alignment between Al and PBL,
significant challenges continue to limit the effective integration of Al within chemistry-based
PBL environments. Many existing Al tools are designed for general educational use and lack
the domain-specific chemical knowledge needed to support abstract reasoning, complex
problem-solving, and theory—practice connections central to chemistry learning (Feldman-
Maggor et al., 2025; Yildirim & Akcan, 2024).

Ethical and educational risks further complicate Al integration, including threats to academic
integrity, student over-reliance on Al-generated outputs, reduced development of critical
thinking, and the potential for biased or scientifically inaccurate feedback (GEM Report
UNESCO, 2023; Watts et al., 2023). Studies have shown that generative Al tools may produce
explanations that appear sophisticated yet contain conceptual or mechanistic errors inconsistent
with accepted chemical principles (Talanquer, 2022; Yik & Dood, 2024). Moreover, the rapid
content generation capabilities of Al challenge conventional assessment practices and raise
equity concerns, as unequal access to Al resources may widen existing educational disparities
(Clark et al., 2024; Guzman et al., 2019). Addressing these challenges requires a coordinated
and multi-dimensional approach, including the development of chemistry-specific Al tools
aligned with PBL principles, targeted professional development for teachers, evidence-based
ethical guidelines, and institutional strategies that promote equitable access. These efforts are
essential to ensure that the integration of Al in PBL genuinely supports students' scientific
thinking and meaningful learning in chemistry, rather than encouraging superficial learning or
inequitable learning practices.

Literature Review

Effectiveness of Al in Chemistry Education: Empirical Evidence
The increasing body of research on the use of Artificial Intelligence (AI) in chemistry education
shows encouraging results, but it also highlights several important issues that need to be
carefully considered. In general, most studies report positive effects on learning outcomes,
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particularly in supporting the learning process. However, researchers continue to raise concerns
related to ethical issues and academic integrity. Evidence from existing studies indicates that
Al applications are most commonly used in higher education, with intelligent tutoring systems
and conversational agents such as ChatGPT being the most frequently adopted tools. Research
has also shown that Al-based tutoring systems used for solving stoichiometry problems,
including highly scaffolded systems (e.g., Stoich Tutor) and dynamically scaffolded systems
(e.g., ORCCA), are effective in improving students’ procedural learning. Systems that provide
more structured and detailed scaffolding tend to produce better gains in conceptual
understanding, as they offer more opportunities for students to practice unit analysis and
chemical operations (Borchers et al., 2025; King et al., 2022). Interestingly, student preference
data reveal a contrasting pattern, as learners often prefer systems that provide less guidance,
even though these systems result in lower learning outcomes. This finding suggests that the
relationship between student autonomy, level of scaffolding, and learning effectiveness is
complex and requires careful consideration when integrating Al into PBL environments.

The impact of generative Al tools in chemistry education presents additional challenges that
need to be addressed. A study by Watts et al., (2023), which compared student responses with
multiple AI chatbot responses in organic chemistry writing tasks, found clear differences not
only among chatbot outputs but also between the problem-solving approaches of chatbots and
students. Their analysis showed that Al chatbots generally do not engage in mechanistic
reasoning at the same level as students, raising concerns about the suitability of Al-generated
content as a learning model. Similarly, Yik & Dood (2024) reported that although ChatGPT
can produce explanations of organic reaction mechanisms that appear detailed and convincing,
these explanations often contain subtle but scientifically significant inaccuracies. This is
concerning because students may accept incorrect information without critically evaluating it.
Overall, these findings highlight the importance of developing students’ critical evaluation
skills alongside the use of Al in learning. Students should be guided to use Al as a learning
support tool while also being trained to question, verify, and correct Al-generated information
rather than accepting it uncritically.

Problem-Based Learning in Chemistry: Foundations and Outcomes
Numerous meta-analyses and systematic reviews consistently report the positive effects of
Problem-Based Learning (PBL) on various aspects of student development. Schmidt-
McCormack et al., (2019) found that PBL increases students’ motivation and interest by making
learning more engaging and personally meaningful. Similarly, Dochy et al. (2003) reported that
PBL has a positive impact on students’ self-regulation and confidence in their ability to learn
independently, which are important affective factors for sustained academic engagement. From
a cognitive perspective, many studies show that PBL improves chemistry students’ conceptual
understanding, critical thinking skills, and problem-solving abilities more effectively than
traditional teaching methods (Giirses et al., 2007; Hmelo-Silver, 2004). More recent studies
have expanded understanding of PBL effectiveness across different chemistry topics and
educational levels. Research on the use of PBL in electrochemistry has shown significantly
higher achievement among students exposed to PBL compared to those taught using traditional
expository instruction (Bilgin et al., 2017). Studies at the lower secondary level also indicate
that PBL not only improves academic achievement but also enhances students’ attitudes toward
chemistry (Charif et al., 2017). However, the existing literature also highlights important
research gaps and implementation challenges. Research on PBL in secondary school chemistry
remains limited, as most studies focus on university or lower secondary contexts (Yildirim &
Akcan, 2024). In addition, effective PBL implementation requires adequate teacher training,
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sufficient resources, substantial time investment, and careful problem design. These factors are
often underreported in previous studies despite their strong influence on PBL effectiveness
(Hung, 2025; Koh et al., 2025). Another ongoing challenge discussed in the literature is the
difficulty of implementing PBL in large classes while maintaining intensive facilitator support
and meaningful small-group collaboration, which are essential features of effective PBL.

Synergies Between Al and PBL: Theoretical Frameworks

The integration of Artificial Intelligence (AI) with Problem-Based Learning (PBL) is supported
by several key educational theoretical frameworks, including social constructivism, cognitive
load theory, and intelligent tutoring systems (ITS). From a social constructivist perspective, Al
technologies can support collaborative knowledge construction by promoting active student
engagement and peer interaction, which are central elements of PBL (Vygotsky, 1978; Graesser
etal., 2018). Al-based learning scaffolding can also be understood as operating within students’
zones of proximal development, by providing adaptive support that helps learners progress from
their current level of competence toward higher levels of achievement (Belland, 2017; Plass &
Pawar, 2020). According to cognitive load theory, well-designed Al systems are able to reduce
extraneous cognitive load by handling routine calculations, presenting problems in a more
structured manner, and providing timely access to relevant information. This allows students’
working memory to be used more efficiently for developing deeper understanding of chemistry
concepts, which is essential for problem-solving within PBL environments (Sweller et al., 1998;
Mousavinasab et al., 2021). Research on intelligent tutoring systems (ITS) further provides
specific frameworks for understanding how Al can enhance the implementation of PBL in
chemistry education. VanLehn’s (2006) taxonomy of tutoring behaviors identifies several key
functions that AI systems can perform in PBL contexts, including problem selection,
instructional scaffolding, learning assessment, and metacognitive support. Recent advances in
adaptive learning technologies demonstrate that Al can personalize PBL experiences by
analyzing student performance data, identifying knowledge gaps, adjusting problem difficulty,
and delivering targeted feedback without requiring continuous teacher intervention (Kulik &
Fletcher, 2016; Graesser et al., 2018). In addition, the Technological Pedagogical Content
Knowledge (TPACK) framework has been applied to examine chemistry teachers’
competencies in implementing Al-enhanced PBL. This highlights that effective Al integration
requires not only strong understanding of chemistry content and PBL pedagogy, but also
informed awareness of Al capabilities, limitations, and ethical implications (Mishra et al., 2023;
Celik, 2023; Lorenz & Romeike, 2023).

Critical Debates: Challenges and Ethical Considerations
Although the integration of Artificial Intelligence (AI) with Problem-Based Learning (PBL)
offers strong potential, several key issues require careful attention. One major concern is that
many existing Al systems still rely on fixed algorithms that do not fully reflect the contextual,
open-ended, and collaborative nature of PBL (Luckin et al., 2016; Castaneda & Selwyn, 2018).
Research has also shown that excessive reliance on Al-based scaffolding may weaken core PBL
goals, such as reducing productive learning challenges, limiting exploration of multiple
problem-solving strategies, and decreasing opportunities for students to develop self-directed
learning skills (Belland, 2017; Loyens et al., 2023). In addition, ethical issues related to the use
of Al in chemistry education have been widely discussed. Studies have identified risks such as
bias, inaccurate information, and Al hallucinations, which may negatively affect learning if
students accept Al-generated content without critical evaluation (Talanquer, 2023; Yik & Dood,
2024). UNESCO’s framework on generative Al in education highlights eight critical concerns,
including human agency, equity, cultural diversity, data privacy, consent in content use, model

Copyright © Academic Inspired Network 56 @@ This work is licensed under
- All rights reserved CCBY 4.0


https://creativecommons.org/licenses/by/4.0/?ref=chooser-v1

Volume: 11 Issues: 80 Special Issue [January, 2026] pp. 53 - 66
Journal of Islamic, Social, Economics and Development (JISED)
elSSN: 0128-1755

Journal website: academicinspired.com/jised

NS DOI: 10.55573/JISED.118005
NETWORK

transparency, digital information pollution caused by Al-generated content, and the risk of
marginalizing diverse perspectives (Miao & Holmes, 2023). Recent studies emphasize that
responsible Al integration requires explicit attention to these ethical dimensions. This includes
transparent communication about the limitations of Al systems, the development of students’
critical Al literacy, and the design of assessment methods that can distinguish genuine student
learning from task completion that relies heavily on Al support (Feldman-Maggor et al., 2024;
Susnjak & Mclntosh, 2024).

Overall, the literature review reveals several important research gaps that need to be addressed
in studies on Al-integrated PBL in chemistry education. Most existing studies are short-term in
nature and place limited emphasis on long-term learning outcomes. In addition, understanding
of how different types and levels of Al scaffolding influence various aspects of chemistry
learning—such as conceptual understanding, procedural skills, scientific reasoning, and
collaborative learning—remains limited. Teacher perspectives, professional development
needs, and practical challenges of classroom implementation have also received insufficient
attention, despite their critical importance for successful adoption. Given the rapid advancement
of Al technologies, these gaps highlight the need for a systematic and evidence-based research
approach to identify and prioritize the key factors that influence the effectiveness of Al
integration in chemistry PBL. Therefore, this study employs a structured analytical method to
examine the cause—effect relationships among the main factors affecting the implementation of
Al-supported PBL in chemistry education.

Methodology

This study employed the Decision-Making Trial and Evaluation Laboratory (DEMATEL)
method. DEMATEL is a structural modeling technique developed by the Science and Human
Affairs Program of the Battelle Memorial Institute in Geneva between 1972 and 1976 to analyze
complex real-world problems (Fontela & Gabus, 1976). Over time, DEMATEL has evolved
into an effective multi-criteria decision-making tool that allows researchers to visualize cause—
effect relationships among factors within complex systems through the construction of
structural models and impact-relation maps (Si et al., 2018). The key strength of the
DEMATEL method lies in its ability to convert qualitative judgments into quantitative
indicators, thereby revealing interdependencies and feedback relationships among system
elements (Wu & Lee, 2007). Unlike traditional analytical approaches that assume criteria are
independent, DEMATEL explicitly considers the mutual influence and complex relationships
that exist in real decision-making situations. As a result, this method is particularly useful for
identifying critical factors and for understanding both the direct and indirect effects of one
factor on others within a system (Tzeng et al., 2007).

DEMATEL Procedural Framework
The implementation of the DEMATEL method involves a systematic five-step procedure
designed to transform expert judgments into a structural model that reveals cause—effect
relationships among the factors under study. The first step is the construction of the direct-
relation matrix, in which experts evaluate the degree of direct influence between each pair of
factors using a predefined scale, typically ranging from 0 (no influence) to 4 (very high
influence) (Seyed-Hosseini et al., 2006). The second step involves normalizing the direct-
relation matrix by dividing each value by the maximum row sum. This process ensures that all
values fall within a standardized and comparable range (Lin & Wu, 2008). In the third step, the
total-relation matrix is calculated to capture both direct and indirect influences among the
factors. This matrix is obtained using the formula T = X(I — X)™', where X represents the
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normalized direct-relation matrix and I denotes the identity matrix (Tseng, 2009). The fourth
step calculates the prominence and relationship indices by summing the rows (D) and columns
(R) of the total-relation matrix. The value D + R indicates the overall importance of each factor
within the system, while D — R distinguishes between cause factors (positive values) and effect
factors (negative values) (Liou et al., 2007). The final step is the construction of a cause—effect
diagram, where these indices are plotted on a two-dimensional graph. The horizontal axis
represents factor importance (D + R), and the vertical axis represents causal relationships (D —
R). This visual representation clearly illustrates the structural relationships among factors and
supports informed decision-making and strategic planning (Hsu et al., 2013; Yang & Tzeng,
2011).

Table 1: Step in DEMATEL
Step 1 Generate the Direct-Relation Matrix

Purpose: To identify the relationships among n criteria/factors within the system

Procedure:
e Construct an n X n matrix, where n represents the number of factors
e  Each expert is asked to complete the matrix independently
e  Values in each row represent the influence of one factor on other factors
e  Values in each column represent the influence received by that factor from other factors
e  When multiple experts are involved, calculate the average (mean) of all expert

evaluations to obtain a single direct-relation matrix
Formula:

0 r Xpg
X=]|: . : l

Xin 0
Note: The diagonal values of the matrix (where row = column) are set to 0, as a factor does not
influence itself

Step 2 Compute the normalized direct-relation matrix

Purpose: To standardize all values within a common range so that they can be easily compared
Procedure:

e Calculate the sum of each row and each column in matrix X

e Identify the maximum value among all row and column sums (denoted as k)

e Divide each element in matrix X by the value k
Formula:

n

k = max maxz Xij, ) Xij

n
j=1 i=1
N ! X

= — %
k

Output: A normalized matrix (N), where all values range between 0 and 1
Step 3 Compute the total relation matrix
Purpose: To capture both direct and indirect influences among all factors in the system
Procedure:
e Generate an n x n identity matrix (I), where diagonal elements are 1 and all other
elements are 0
e  Subtract the normalized matrix N from the identity matrix to obtain (I — N)
e  Compute the inverse of the matrix (I — N), denoted as (I — N)!
e  Multiply the normalized matrix N by (I — N)* to obtain the total-relation matrix
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Formula:
T= lim (N'+ N2+ -+ N%)
—+00
Equivalent to: T=Nx({-N)"*

Output: The total-relation matrix (T), which represents the overall influence (direct and indirect)
among all factors.

Step 4 Setting the Threshold Value

Purpose:
e To identify significant causal relationships among factors
e To climinate weak or negligible relationships when constructing the Network

Relationship Map (NRM)

Procedure:
e Calculate the average value of all elements in the total-relation matrix T
e  Use this average value as the threshold value
e Compare each element in matrix T with the threshold value
e Set all values below the threshold to zero, as these relationships are considered

insignificant
e Retain only values greater than the threshold for further analysis and visualization
Application in NRM:

e  Only relationships with values greater than the threshold are displayed in the Network
Relationship Map (NRM)
e Partial or weak relationships are excluded to produce a clearer and more meaningful
causal structure
Threshold Value Used in This Study:
e  Threshold value = 0.811
Output:
e A filtered internal relations matrix used to construct the NRM, showing only meaningful
causal links among factors

Step 5 Final output and create a causal diagram
Purpose: To determine the importance and causal role of each factor in the system
Procedure:
Calculate the sum of each row in matrix T to obtain D
D =3%1T;
Calculate the sum of each column in matrix T to obtain R
R=%LTy
Compute D + R and D — R for each factor
Interpretation:

e D+ R — Indicates the overall importance (prominence) of a factor in the system
e D —R — Indicates the net effect of a factor:
Positive value — Cause factor
Negative value — Effect factor
Output: A causal diagram, where:
Horizontal axis = D + R (importance)
Vertical axis = D — R (cause—effect)

Sampling Technique for DEMATEL Application
Selecting an appropriate sampling technique is a critical part of implementing the DEMATEL
method, as the quality and representativeness of expert judgments directly affect the validity
and reliability of the resulting structural model. Purposive sampling, also known as judgmental
or expert sampling, is the most commonly used approach in DEMATEL studies. In this method,
participants are deliberately selected based on their specialized knowledge, relevant experience,
and deep understanding of the problem being studied (Patton, 2002; Etikan et al., 2016). The
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appropriate sample size for DEMATEL studies is still debated among researchers. However,
most studies recommend involving between 5 and 15 experts, as this range provides a balance
between obtaining diverse perspectives and managing practical constraints such as data
collection and consensus building (Chen & Hung, 2010; Li & Tzeng, 2009). Experts are usually
selected based on several criteria, including more than five years of professional experience in
the relevant field, at least a master’s degree, current involvement in related decision-making
processes, and demonstrated expertise through publications or practical achievements (Dalalah
etal., 2011; Shieh et al., 2010). In this study, five experts were selected as the main participants
to provide expert judgments for the implementation of the DEMATEL method.

DEMATEL Questionnaire Scale Explanation
This study employs the DEMATEL (Decision Making Trial and Evaluation Laboratory)
method to analyze the cause—effect relationships among the identified factors. Respondents
were asked to evaluate the degree of direct influence of each factor on other factors using a
five-point scale. The definition of each score in this five-point scale is presented in Table 2.

Table 2: DEMATEL Influence Scale Used in the Study

Score Level of Influence Description

0 No influence The factor has no direct influence on another factor

1 Low influence The factor has a very minimal effect on another factor

2 Moderate influence The factor has a reasonable level of effect on another factor
3 High influence The factor has a significant effect on another factor

4 Very high influence The factor has a very strong cause—effect relationship with

another factor

Findings
Table 3.1: Direct Relation Matrix
Quality of Al Al Adaptivity to Al Support for Student
Scaffolding Student Proficiency Scientific Engagement &
Levels Reasoning Motivation
Quality of Al 0 3.6 3.6 3.6
Scaffolding
Al Adaptivity to 2.6 0 3.2 3
Student Proficiency
Levels
Al Support for 24 2.2 0 32
Scientific Reasoning
Student Engagement 1.2 2 2.6 0

& Motivation

Table 3.2: The Normalized Direct-Relation Matrix

Quality of Al Al Adaptivity to Al Support for Student
Scaffolding Student Proficiency Scientific Engagement &
Levels Reasoning Motivation
Quality of Al 0 0.333 0.333 0.333
Scaffolding
Al Adaptivity to 0.241 0 0.296 0.278
Student Proficiency
Levels
Al Support for 0.222 0.204 0 0.296
Scientific Reasoning
Student Engagement 0.111 0.185 0.241 0

& Motivation
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Table 3.3: The Total Relation Matrix

Quality of Al Al Adaptivity to Al Support for Student
Scaffolding Student Proficiency Scientific Engagement &
Levels Reasoning Motivation
Quality of Al 0.598 0.962 1.088 1.122
Scaffolding

Al Adaptivity to 0.7 0.602 0.938 0.956

Student Proficiency
Levels

Al Support for 0.634 0.71 0.637 0.894
Scientific Reasoning

Student Engagement 0.46 0.575 0.689 0.517

& Motivation

Table 3.4: The Total Relationships Matrix by Considering the Threshold Value

Quality of Al Al Adaptivity to Al Support for Student
Scaffolding Student Proficiency Scientific Engagement &
Levels Reasoning Motivation
Quality of Al 0 0.962 1.088 1.122
Scaffolding
Al Adaptivity to 0 0 0.938 0.956
Student Proficiency
Levels
Al Support for 0 0 0 0.894

Scientific Reasoning

Table 3.5: The Final Output

R D D+R D-R
Quality of AI Scaffolding 2.392 3.771 6.163 1.378
Al Adaptivity to Student Proficiency Levels 2.849 3.197 6.045 0.348
Al Support for Scientific Reasoning 3.352 2.875 6.227 -0.477
Student Engagement & Motivation 3.489 2.24 5.729 -1.249

i '

Quality of Al »| Al Adaptivity to Student Student Engagement &
Scaffolding Proficiency Levels Motivation

\ Al Support for /

Scientific Reasoning

Figure 1: DEMATEL Based Structural Model of Al Integration Factors in Chemistry
Problem-Based Learning
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Quality of Al Scaffolding

Al Adaptivity to Student Proficiency Levels
Al Support for Scientific Reasoning
Student Engagement & Motivation

Figure 2: Cause—Effect Diagram

Discussion

The cause—effect diagram produced from the DEMATEL analysis provides a clear
understanding of the structural relationships among the key factors influencing the integration
of Artificial Intelligence (Al) in Problem-Based Learning (PBL) for chemistry education. Based
on the positions of the factors along the importance (D + R) and cause—effect (D — R) axes, the
results distinguish between driving factors and outcome factors within the system. The findings
show that Quality of Al Scaffolding is the most influential driving factor, with high importance
and a positive net effect, highlighting its foundational role in supporting students as they solve
complex chemistry problems through structured guidance and step-by-step reasoning support.
Al Adaptivity to Student Proficiency Levels also functions as a driving factor, indicating that
Al systems capable of adjusting feedback and task difficulty based on students’ learning levels
are important for effective PBL implementation. In contrast, Al Support for Scientific
Reasoning and Student Engagement and Motivation emerge as outcome factors that are mainly
influenced by the quality and adaptivity of Al support rather than acting as direct drivers
themselves. This suggests that improvements in reasoning and motivation do not occur
automatically through Al use, but instead result from well-designed, pedagogically aligned Al
scaffolding. Overall, the findings emphasize that successful Al integration in chemistry PBL
depends more on strong instructional design and adaptive support than on surface-level
outcomes alone.

Conclusion

The DEMATEL analysis in this study establishes a clear cause—effect hierarchy among the
factors influencing the integration of Artificial Intelligence (AI) in Problem-Based Learning
(PBL) for chemistry education. The findings show that quality of Al scaffolding and Al
adaptivity to students’ proficiency levels act as the main driving factors, which in turn influence
Al support for scientific reasoning as well as student engagement and motivation. These results
clarify that Al does not automatically improve learning outcomes; rather, its effectiveness in
PBL depends on how well Al is designed to guide students and adapt support to their learning
levels. For chemistry teachers and educational technologists, these findings offer practical
guidance by highlighting the need to prioritize the development of chemistry-specific Al
scaffolding grounded in domain expertise, adaptive algorithms that respond to individual
learning progress, and professional development programs that equip teachers with the skills to
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integrate Al strategically within PBL contexts. As the use of Al in education continues to grow
globally, this study provides empirical evidence that technological sophistication must be
balanced with pedagogical sophistication to fully realize the potential of Al in chemistry
education. Future research is recommended to validate these cause—effect relationships through
longitudinal studies, explore contextual variations across different student populations and
chemistry topics, and develop evidence-based frameworks that support the co-design of Al
systems by chemistry educators, students, and technology developers to ensure alignment with
authentic learning needs in scientific problem-solving.
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